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Introduction

The study of polyhedra is an ancient one, going back to the dawn
of history. It is especially those polyhedra that are called uniform
that have evoked the greatest interest and provided the most fascina-
tion. It should therefore be of special usefulness for mathematics stu-
dents and teachers in their classrooms today to see awl handle these
geometrical solids in aesthetically pleasing models and to be delighted
with their beauty and form.

Most students show immediate interest in this kind of work, and
teachers are often surprised to see the quality of the results a student
obtains in making the models. It is a genuine outlet for the creative
instinct; in addition, it calls for care and accuracy, as well as persever-
ance and pertinacity in models that have many parts and an intricate
color arrangement. It is also surprising how the models can stimulate
interest in some of the basic theorems of solid geometry. And, when
a project is finished, the models will enhance the appearance of
the classroom, where they can be put on permanent display.

1
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The Five Platonic Solids

The most ancient polyhedra are the set of five known as the Platonic

solids. They derive their name from the great Greek philosopher

Plato, who discovered them independently about 400 a.c., though they

were probablyknown before Plato. The ancient Egyptians knewfour of

them: the tetrahedron, octahedron, and cube are found in their archi-

tectural design, and Egyptian icosahedral dice are to be found in an

exhibit in the British Museum. According to Heath, the Etruscans

were acquainted with the dodecahedron before 500 B.c.1 All five were

studied by the early Pythagoreans before the time of Plato and Euclid.

It is in the Elements of Euclid, however, that we find the most exten-

sive treatment of the geometry of these five solids.

Today models of these solids, usually in plastic, are featured in the

catalogues of scientific and educational supply houses. But models

in heavy paper are so easily made and so useful as a project for stu-

dents that it is well worth the effort to make a set. The nets, or pat-

terns, for making these models are given in many geometry textbooks.

It will be found that the models are even more attractive when they

are made with facial polygons of various colors. (Suggested color

patterns are set out in Figures 1, 2, 3, 4, and 5.)

Pio. 1
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Polyhedron Models for the Classroom 5

For easiest construction and sharpest edges, the material to use is

heavy paper with a somewhat hard finishthe type used for file cards.

It can be bought in larger sheets, in colors, under tue name "colored

tag." Pastels are very suitable, and they are a good alternative to

deeper colors. In the method of construction suggested here you need

only one triangle, square, or pentagon as a net. Three, four, or five

sheets oi colored paper may be stapled together and the net placed on

top of them. Then, using a sharp needle and pricking through all the

sheets at one time, make a hole in the paper at each vertex of the net,

which is held as a guide or template. In this way exact copies of each

part are quickly obtained. Next give the paper an initial trimming with

scissors, with all the sheets still held firmly together by the staples.

You must be careful to provide about a quarter-inch margin all

around to be used for flaps or tabs to cement the parts together. After

this it will be best to treat each part individually. Experience will soon

teach you that the accuracy of your completed model is directly pro-

portional to the care you have lavished on each individual part. With

a sharp point, such as that of a geometry compass, you must now score

the paper, using a straightedge or set square as a guide to connect

the needle holes with lines. (Pencil lines are not needed, since the

process of scoring sufficiently outlines the shape of each part.) More

accurate trimming is next to be done. (For suggestions on how to do

this, see Figures 6, 7, and 8.) The scored lines then make folding of

the tabs a simple and accurate operation.
A good household cement provides the best adhesive, since it is

strong and quick-drying. A few wooden clothespins of the coiled-

spring variety that have been turned inside out make excellent clamps.

When these are used, the cementing can proceed rapidly and the

clamps can be moved from one part to the next in almost a matter of

minutes as each part is successively cut and trimmed. The last part

will not give you too much trouble if you first cement one edge and

let it set firmly, then proceed to put cement on the other edges and

close down the last polygon as you would close the lid on a box. A

needle or compass point makes a good instrument to maneuver the

last edges into accurate position. Deft fingers and a little practice will

do the rest.



The Thirteen
Archimedean Solids

Once a set of the five Platonic solids has been made, the next proj-
ect will certainly be to make a set of the thirteen Archimedean solids.
These too have an ancient history. Plato is said to have known at least
one of them, the cuboctahedron. Archimedes wrote about the entire
set, though his book on them is lost. Kepler is the first of the moderns
to have treated these solids in a systematic way. He was also the first
to observe that two infinite sets of polyhedra, the set of prisms and
the set of antiprims, have something in common with the thirteen
Archimedeans, namely, membership in the set known as the semi-
regular polyhedra.= (A semiregular polyhedron is one that admits a
variety of polygons as faces, provided that they are all regular and that
all the vertices are the same.)

As in the case of the Platonic solids, so too in that of the Archime-
deans the beauty of the set is greatly enhanced by suitable color ar-
rangements for the faces. Since it is evident that many different color
arrangements are possible, you may find it interesting to work out a
suitable arrangement for yourself. The general principle is to work
for some kind of symmetry and to avoid having adjacent faces with
the same color. This may remind you of the map-coloring problem.
The fact is that a polyhedron surface is a map, and as such is studied
in the branch of mathematics known as topology. In making these
models, however, you need not enter into any deep mathematical
analysis to get what you want. Your own good sense will suggest
suitable procei -res. (See page 8.)

The actual technique of construction is the same here as that
given above: namely, only one polygona triangle, square, pentagon,
hexagon, octagon, or decagonwill serve as a net. However, it is
important to note that in any one model all the edges must be of the
same length. If you want to make a set having all edges equa!, you will
find the volumes growing rather large with some models in the set.
Of course a large model takes up more display space, so you must
gauge your models with that fact in mind. On the other hand, you

6



'MUSCATEL%
TETRAHEDRON

CUBOCTAHEDROW

TRUNCATED CUBE

TRUNCATED
OCTAHEDRON

RHOMBICUROCTAIIEDRON

GREAT RHOMBICUBOCTAHEDRON

SNUB CUBE

SNUB DODECAHEDRON

ICOSIDODECAHEDRON

111E THIRTEEN
ARCHIMEDEAN SOLIDS

TRUNCATED
DODECAHEDRON

TRUNCATED ICOSAHEDRON

.--;134

1.3

IRHOSOUCOSIDODECAHEDRON

f

_

GREAT

RHOMBICOSIDODECAHEDRON



8 Polyhrdron Models for the Classroom

may want to vary the edge length from model to model and thus
obtain polyhedra of more or less uniform volume or actually of uni-
form height. Here experiment is in order, and a student can have an
excellent demonstration appealing to his own experience of the geo-
metrical theorems on the relation of similar figures or solids: linear
dimensions are directly proportional to each other; areas are propor-
tional to squares on linear dimensions; volumes, to cubes on linear
dimensions.

SUGGESTED COLOR PATTERNS FOR THE ARCHIMEDEAN SOLIDS
(R = rose, Y = yellow, B = blue, 0 = orange, G = green, W = white)

1. Truncated tetrahedron:
4 hexagons GRBY
4 triangles GRBY

2. Cuboctahedron:
6 squares YB R Y BR
8 triangles G

3. Truncated cube:
6 octagons GBRGBR
8 triangles Y

4. Truncated octahedron:
6 squares G
8 hexagons R YO B R YOB

5. Rhombicubnctahedron:
6 squares Y

12 squares R
8 triangles B

6. Great rhombicuboctahedron:
6 octagons RYBRYB

12 squares G
8 hexagons 0

7. Snub cube:
6 squares YRBYRB
8 triangles 0
8 triangles B
8 triangles R
8 triangles G

8. Snub dodecahedron:
12 pentagons 0
15 triangles B
15 triangles R
15 triangles Y
15 triangles G
20 triangles 0

9. Icosidodecahedron:
3 pentagons R
3 pentagons B
3 pentagons 0
3 pentagons G

20 triangles Y
10. Truncated dodecahedron:

3 decagons Y
3 decagon R
3 decagons G
3 decagons B

20 triangles 0
Truncated icosahedron:

8 hexagons R
6 hexagons G
6 hexagons Y

12 pentagons 0
12. Rhombicosidodecahedron:

12 pentagons R
30 squares 13
20 triangles Y

13. Great rhombicosidodecahedron:
12 decagons Y
20 hexagons R
30 squares B

11.



Prisms, Antiprisrns, and
Other Polyhedra

The construction of a few prisms and antiprisms will next give you
a good idea of why these belong to the set of semiregular solids. You
already have the required nets, since they are the same polygons as
those used for the Archimedean solids. A prism has any regular n -gon
for end faces and squares for side faces. The antiprism has equilateral
triangles instead of squares for side faces. Once you have made some
of these, you will find that it is possible for you to branch off on your
own into many different ty2es of irregular solids. Some of these come
up in textbook problems in a mathematics class: right pyramids (with
regular bases or otherwise) having isosceles triangles for sides, vari-
ous types of oblique pyramids, parallelepipeds, truncated pyramids,
and others. You will have noticed that some of the Archimedeans are
truncated versions of the Platonic solids. There are some interesting
dissection problems in connection with the tetrahedron and the cube.
These take on added interest for their usefulness as puzzles. If you
are interested in mechanical drawing, you will find that many of the
objects you are called upon to draw can also be constructed as models
in paper according to the techniques suggested in this monograph.
Sections of solids can also be illustrated in this way. In fact, even
circular cones and conic sections can be similarly done. (See Figures
9-17 for some suggestions.) Then why not go ahead and discover
some others on your own?

FIG. 9
Square pyramid

FIG. 10
Pentagonal pyramid
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The Four
Kepler-Poinsot Solids

The next set of uniform polyhedra, four in number, whose beauty
is most striking, is that of the Kepkr-Poinsot solids. ( Kepler discov-

ered two about 1619, and Poinsot rediscovered these aria liscovered
the two others in 1809.) These solids are all the more interesting be-

cause they were unknown to the ancient world. Of course the star
polygon, also called the pentagram, is very ancient, possibly as old as

the seventh century B.C.' The Pythagoreans used this five-pointed
star as a symbol of their brotherhood. Yet the discovery of solids
with star-shaped facial. planes belongs to the modern era. It is per-
haps correct to say that the ancients missed these because they were
concerned only with convex polygons and polyhedra and did not con-

sider the case of intersecting facial plAnes. These are the properties
that enter into the solids to be described in what follows. It is pre-

cisely the star-shaped appearance of the Kepler-Poinsot solids that
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FIG. 20

gives them their interest and beautya beauty that, again, is greatly

enhanced by making them so that each facial plane has its own color.

h was Cauchy who pointed out that these four polyhedra are ac-

tually stellated forms of the dodecahedron and icosahecL-onthe first

three, of the former; and the last one, of the latter. This process of

stellation is in itself a most interesting one. It is most readily under-

stood by investigating the dodecahedron. First it may be noted that

the five-pointed star, or pentagram, arises first by producing the sides

of a pentagon or by drawing all the diagonals (see Figures 18 and

19). If both procedures are combined in one drawing, the result will

give three sets of triangles, which provide the parts required for three

of the Kepler-Poinsot solids: the small stellated dodecahedron, the

great dodecahedron, and the great stellated dodecahedron (see Figure

20). The simplicity of this figure, providing such simple parts to be

used as nets for the making of these solids, is something greatly to be

cherished in these polyhedron models.

Before any description of the construction of these solids is set

down, a further description of the stellation process will be helpful.

If the facial planes of the dodecahedron, for example, are produced,

those planes that intersect will generate certain cells: first a set of

twelve pentagonal pyramids; then a set of thirty disphenoids, or

wedge-shaped pieces; and finally a set of twenty triangular dipyramids.
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Each of these sets of cells constitutes the external parts of successive
stellations of the dodecahedron. In print this may sound complicated,
but in models it is very evident.

As for constructing the models, you can do it without making the
cells mentioned above. But if you are very ambitious, it would be an
excellent project to make all the cells. You can easily discover the
nets for these cells by yourself. Then you can show how the stellated
forms arise by adding these cells to the basic solid in each case. In
fact, with a more solid material, such as wood, plastic, or even plaster,
these cells could be made with a peg-and-hole arrangement to keep
the parts together. If a good strong paper with a smooth finish is used,
the parts may also be made to adhere with a thin rubber cement.

The Small Stellated Dodecahedron

To make a model of the small stellated dodecahedron uniform in
construction with the models previously described, all you need for
a net is an isosceles triangle with base angles 72 degrees and vertex
angle 36 degrees. This is triangle number 1 in Figure 20. With a
needle, prick through the vertices of this triangle placed as a net on
top of six sheets of paper, each of a different color. You will need to
repeat this pattern ten times, giving you ten triangles of each of the
six colorssixty triangles in all. Score the lines and trim the tabs as
described before. You will find that the more acute angles must also
have more acute trimming. This is best done after the tabs have been
folded; if it is done before, folding becomes more difficult. (See Fig-
ure 21 for suggestions.) Next, five of these triangles are cemented to-
gether as in Figure 22. Then the final edges are joined to form a

Flo. 21 Flo. 22

1
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pentahedral anglethat s, s pentagonal pyramid without a base.
You will find it easy to get the correct color arrangements by following
the color scheme given below:

(0) Y BORG
(1) WGORB
(2) WYRGO
(3) WBGYR
(4) WOYBG
(5) WRBOY

Note that only six vertices are given here. The other six are made
in a counterclockwise arrangement, found by reading the table above
from right to left, rather than from left to right as you did for the first
six vertices. You must of course proceed in a systematic fashion,
cementing the parts with all triangles pointing, say, away from you
and working from left to right. In doing the second set of six you must
work in the same manner, although you are reading the color table
backwards. You will also find it more interesting if you cement the
vertices together as you complete them. (Figure 23a shows how this
is done to get the colors correct.) Each of the six vertices in the sec-
ond set is placed diametrically opposite to its counterpart in the com-
pleted model.

As the models now come to be more intricate, with both convex and
concave parts, a further hint about construction may be useful. The
first parts are usually easy to handle while you can work on the interior
where the tabs are being joined, using clamps as before. (As you pro-
ceed you will notice that the interior actually begins to look just as
beautiful as the exterior, but of course this will all be hidden in the
completed model. It just happens to be a fact that adds to your
interest and enthusiasm for making models and thus lightens the
monotony of the work of repeating so many parts.) It might seem
that considerable skill or patience is needed to get the last vertex or
part cemented in its proper place. But the secret here is to cement only
one flap or tab first, :et it set firmly, and then close the final opening,
as described before. The double tabs make it easy to get the parts to
adhere without clamps, since the model has sufficient form by this
time to exert its own pressure.
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F. 23

By this method all the solids now being described can be con-
structed so that they are completely hollow inside. A basic solid
could of course be usedfor example, beginning with a dodecahe-
dron, you could cement the vertex parts, twelve pentagonal pyramids,

one onto each face, and thus obtain a small stellated dodecahedron.

But it will be found that the final product will betray its construction
when closely examined. In some models you may gain better rigidity
by this method; in fact, the construction of the small stellated dodeca-
hedron as described here is one in which the model is not technically
rigid. But if the cementing is carefully done along the full length of
each edge and a final drop of cement is added to both the acute and
the obtuse or concave vertices in the completed model, you will find

the result satisfactory.
Again, you may wish to economize on the number of separate parts

used in a model. You might make one net, for example, in which the

five triangles are all of one piece, giving a vertex part that is all of
one color. You will find, however, that you have sacrificed beauty for

economy. Once more, the rule here is that you get results propor-
tionate to the efforts you put forth. These general comments apply
equally to the models now to be discussed.

4

Flo. 23a
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The Great Dodecahedron

The second stellation of the dodecahedron is known as the great
dodecahedron. It may be described as a solid composed of twelve
intersecting pentagons. When it is appropriately made in six colors,
it readily gives the appearance of a solid star embossed on a pentagon
plane; but each such star shares each of its arms with an adjacent star.
The net is simply an isosceles triangle, this time with base angles of
36 degrees and a vertex angle of 108 degrees. This is triangle 2 in
Figure 20. Ten sheets of each of the six colors are needed. (See Fig-
ure 23 for a suggestion about how to trim the parts. The color ar-
rangement is shown in Figure 24.) Again only half the model is
shown. A simple method of construction is to cement three triangles
in the form of a trihedral dimple, as follows:

(1) Y W G (6) G 0 Y
(2) B W Y (7) Y R B
(3) 0 W B (8) B GO
(4) R W 0 (9) 0 Y R
(5) G W R (10) R B G

Once this half has been constructed, the color pattern itself is evident

enough to enable you to continue without further difficulty. The other
ten dimples are the usual counterparts. In approaching the last pieces
you must take care to have one trihedral dimple left as the last part
to be cemented. Let the cement set firmly along one edge of this part,
then apply cement to the other two edges and close the triangular hole,
with the trihedral dimple serving as the lid. In this way the longer
and acute part of the wedge-shaped star arms can easily be pinched
together with the fingers.

The Great Stellated Dodecahedron

The third and final stellation of the dodecahedron is called the
great stellated dodecahedron. This solid makes a lovely Christmas
decoration, and is often seen as such in store windows and commercial
displays during the holiday season. It can be, and often is, made by
adding triangular pyramids to an icosahedron base; but, as mentioned
before, this method will be found to lack something of the precision
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and beauty that can be achieved in a completely hollow model in six
colors. You may perhaps be surprised that the icosahedron is used
as a base for a stellated form of the dodecahedron. But then there are
many surprises in the world of polyhedra, and curiosity about the
reasons for them may spur you to further study on your own. (See
the Bibliography for related works.)

The net for the great stellated dodecahedron is once more the
isosceles triangle with 72 degrees for two angles and 36 degrees for the

third. It is triangle 3 in Figure 20. Ten sheets of each of the six

colors will suffice. In this model, however, only three triangles are
used to form a trihedral vertex, and twenty such vertices are needed
for the complete model. One such vertex is shown in Figure 25. The
color arrangement for ten vertices is as follows:

(1) Y G B (6) W G B
(2) B Y 0 (7) W Y 0
(3) 0 B R (8) W B R
(4) R 0 G (9) W 0 G
(5) G R Y (10) W R Y



18 Polyhedron Models for the Classroom

\

Y

FIG. 25

The first five vertices are joined in a ring with the bottom edges form-
ing a pentagon. Then the next five vertices are added to each edge
of this pentagon, so that the w!aite edge of (6) is cemented to the
yellow of (1), and so forth. The next ten vertices have colors in
counterclockwise rotation and are placed diametrically opposite to
their counterparts. If you work systematically, as before, you will not

find this difficult. In fact, the colors will help you if you remember

that each triangle is an arm of a five-pointed star and that you want
each star to have five arms of the same color. When you have com-
pleted these three according to the instructions given here, you will
also notice that planes that are parallel to one another are the same

color.
Nothing has been said about the size of these polyhedra. Perhaps

experiment will suggest appropriate measures, depending on how and
where you wish to use the models. Different types of paper or card-
board also may be used: shining gold, silver, green, or red would give
breathtaking results in a model hung by thread and illuminated with

various lights!
A complete set of four dodecahedra--the original dodecahedron

and its three stellationsall using the same six colors, and all built to
display their exact relationship in size to one another, makes a most
attractive classroom display. And when you have made these and
examined them at close range, you will better understand the principle

of stellation.

I
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The Great Icosahedron

But of all the polyhedra so far described perhaps the most beautiful

and attractive is the great icosahedron itself, which is the fourth of

the Kepler-Poinsot solids. The nets are very simple (see Figure 26).

The color arrangement described here gives a final beauty that cannot

but appeal to anyone who sees or handles a model. And, fortunately
enough, it is not at all difficult to makenot as hard as some of the

compounds mentioned below. it does require the patience and the

time to prick, cut, score, and trim one hundred twenty individual

pieces of cardboard for a complete model. But it is well worth the
trouble and the effort.

First staple together five sheets of colored paper, one sheet of each

of the five colors. Prick out the patterns to get copies of the net, score,

and trim as usual. The dotted line of Figure 26 must be scored on the

reverse side, since the small isosceles triangle is folded up. The tabs,

as usual, are folded down. You are now ready to cement the parts

together. Follow the paired arrangement of colors given below,
cementing the pairs first:

(0) YG BY OB RO GR
(1) BG YB RY OR GO
(2) OY BO GB RG YR
(3) RB OR YO GY BG
(4) GO RG BR YB OY
(5) YR GY OG BO RB

Then five pairs make the fanlike form shown in Figure 27. When the
remaining edges are brought together, a vertex is completed. The
fold should be down between each member of the pairs given above,
and up between the pairs. The smaller isosceles triangles should then
be cemented in their respective places to form a pentagonal dimple,
from which the vertex rises. Twelve vertices are required; as before,
six are counterparts of the other six. You will automatically find the
counterparts by reading the color table in reverse, provided you con-
tinue the same systematic handling of parts for all vertices. The ver-
tices are joined as shown in Figure 33, where the colors indicated are

the colors of respective dimples.
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Other Stellations or Compounds

The principle of stellation can be applied to only two other Platonic
solids: the octahedron and the icosahedron. If you have studied the
principle as it applies to the dodecahedron in the three stellated forms
described above, you may also understand very readily why the cube
and the tetrahedron cannot be stellated. It is interesting that the
octahedron has only ont stellation. This is the eight-pointed staror
stetter octangula, as Kepler called itwhich actually turns out to be a
compound of two tetrahedra. It is even more interesting to find among
the stellation of the icosahedron other compounds: but more about
these later. None of these compounds is classified with the uniform

CONFOUND or TV/0 TETILANEONA
(1Canait's i'srma ocrairsour) CONNOOND OF FIVE OCTANES/I

ameouse op rliveminuniak COUFOUND OF TEN TETININNII

OI STILLATiONI OS COMPOUNDS-

Model at sop left is a *Nadas of the octahedron. The rest are nelladone of the
icorahedros.

21
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FIG. 2$

polyhedra, precisely because they are compounds; specifically, they

are intersecting polyhedra or interpenetrating polyhedra, not intersect-

ing polygons. Nevertheless these compounds ark: true stellations, and

they do make pleasing models. It is for this reason that a description

of them is included in this monograph.
To make a model of the stella octangula, all you need for a net is

an equilateral triangle. Since there are eight trihedral yen' c.s, the
color arrangement may be as follows:

(1) B Y
(2) 0 R Y
(3) B Y R
(4) R 0 B

One vertex is shown in Figure 28. The other four vertices are the

counterclockwise counterparts of this, and you should find no diffi-

culty in making the proper assembly if you remember that in this
arrangement of colors each of the four sides of each tetrahedron

is a different color, but each pair of parallel planes of the polyhedron

is the same color.
The icosahedron has some very interesting stellations. Including

the compounds mentioned above, the total enumeration comes to
fifty-nine, if one follows the complete analysis of the problem given

by Coxeter.4 It is indeed surprising that a compound of five octahedra,

a compound of five tetrahedra, and a compound of ten tetrahedra
appear among the stellations of the icosahedron. Such a fact would

have delighted the mind of Plato.
These compounds make very attractive models. To understand

how the nets are obtained, it is necessary to know something about the
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stellation pattern for the icosahedron. This is analogous to the dodeca-

hedral pattern of Figure 20. The icosahedral pattern is shown in Fig-

ure 29. Actually, the innermost equilateral triangle (numbered 0) is
one of the faces of the icosahedron; and the outermost equilateral

triangle is one of the facial planes of the great icosahedron, the fourth

of the Kepler-Poinsot solids. If each side of this large triangle is

divided by two points according to the "golden section"a linear
section, discussed in Euclid's Elements, that is approximately 1:0.618
the pattern is quickly and easily drawn. The numbering will show

what parts are used for each net. (The nets are given in Figures 30,
32, and 34.) All of these compounds can be made by the methods
described abovethat is, by using parts with tabs left for cementing
the pieces together and constructing the models so that they are com-

pletely hollow inside. The color patterns are such that in the
case of the compounds of five octahedra and of five tetrahedra each
solid is of one color. In the compound of ten tetrahedra each two
tetrahedra tint share facial planes also share a color.

To construct the compound of five octahedra, make thirty copies of
the net in Figure 30, six of each of the five colors. First assemble the
vertices as though they were small pyramids without their rhombic
bases. Then follow the color pattern shown in Figure 31, where each
rhomb is a vertex. This shows a ring of five vertices at the center.
Between the extending arms of this ring a second set of five vertices is
cemented, but their orientation is such that the short slant edge of
each pyramidal vertex continues on a line with the grooved edge be-
Iween vertices of the central ring. You may find this a bit puzzling;

but if you remember to keep the basic octahedral shapes in mind, you
will see them begin to develop, and the color will then help you pro-
ceed correctly. The color pattern of Figure 33 now begins to appear.
By comparing the numbering of Figure 31 with Figure 33, you will
see this. This hollow model is not completely rigid, but it will be
satisfactory nevertheless.

For a model of the compound of five tetrahedra all you need is
twenty copies of the net in Figure 32, four of each of the five colors.
First make trihedral vertices with the bottom edges looking rather
jagged. If you begin by making a ring of five vertices cemented to-
gether with the edge marked AB of one adhering to the identical edge
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FIG. 33

of the other, you will find the points numbered 2 forming a dimple in

the center of the ring. Once you have built this much of the model,

the other veal= will easily find their places according to the color

scheme, making each tetrahedron entirely of one color. This is per-
haps the most difficult model to construct because of all the jagged
edges. The points numbered 2 fit into three different and adjacent
dimples. The secret here is to worry about only one edge at a time.

Always begin with the edge AB. Once it is cemented, let it set firmly,

and then give your attention to the other edges. You may find that the

last vertex will call for considerable skill, not to mention patience; but
it can be done. Here you have a real challenge. This model is rigid,
both technically and practically; and it is also aesthetically pleasing.
(Folding the parts up instead of down gives the model a reverse twist

a twist that, by the way, will not be noticed by most people.)

no. 34
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For a model of the compound of ten tetrahedra, begin by making
sixty copies of each of the two parts shown in Figure 34that is,
twelve copies of each of the five colors. Suggestions for trimming the
tabs are shown with the nets for the sake of clarity. Note that the left
arm of the net in Figure 34 is cut without leaving a tab on its right side,
and that the cut is to be made clean into the center point between the
arms. The triangle numbered 5 can then be folded down. Once five
parts have been cemented together to form a pentagonal dimple, the
other triangle numbered 5 can be cemented to the edge lacking a tab
by following the color arrangement shown in Figure 35 (basically the
same as that shown in Figure 33). The short dotted lines in Figure 35
indicate overlapping parts, but these parts are to be folded down so
that the bases of the small triangles can be joined. This is done by
folding up the tab of one to adhere to the undersurface of the other,
which lacks a tab. This completes one part. Twelve of these parts
are needed for a complete model, six of which are counterparts of the
other six, as explained before. Some skill and patience is needed for
this model also. But it can be done, and it makes a very pleasing

polyhedron.

FIG. 35



Some Other Uniform Polyhedra

So far this monograph has described the five Platonic solids, the
thirteen Archimedeans, the infinite set of prisms and antiprisms, a few

miscellaneous irregular polyhedra, the four Kepler-Poinsot solids, and

some compounds arising from the stellation process. All of these

except the irregulars and the compounds are classified as uniform
polyhedra. (A polyhedron is uniform when all its faces are regular
polygons [including regular star polygons] and all its vertices are
alike.) The question might now well be asked, Are there any more
uniform polyhedra? The answer is, Yes, there are moreat least fifty-

three others. Coxeter has published a brief history of all these
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solids and a thorough investigation of the mathematics involved in
their classification and discovery. In this book, entitled Uniform
Polyhedra, he mentions the fact that Badoureau in 1881 made a sys-
tematic study of all thirteen Archimedean solids on the basis of their
planes of symmetry and their vertices to discover polygons penetrating
the interior parts of each solid. By this method he discovered thirty-
seven uniform polyhedra not known before that time.' Brueckner
published a classic work on polyhedra in 1900 in which many were
beautifully illustrated in photographed models and in drawings.'
About 1930 Coxeter himself and J. C. P. Miller discovered twelve
other uniform polyhedra by investigating the Schwarz triangles on
a spherical surface. Thus the total enumeration of uniform polyhedra
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Nom -A faceted polyhedron is one that may be derived from a convex polyhedron
by the removal of solid pieces. A stellated polyhedron is one that may be
derived from a convex polyhedron by the addition of solid pieces. Truncation
is also a removal- process. Quasitruncation is a combination of removal and
addition.
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given by Coxete: in 1954 comes to seventy-five, but (a most striking
fact) he admits that a rigoroi proof has still to be given that this
enumeration is complete.'

As for the construction of models La- these polyhedra, this mono-
graph can present only a selection of some of the more simple ones,
since some are actually most intricate. Coxeter gives sketch drawings,
done by J. C. P. Miller, of all seventy-five and photographs of models
in wire, made by M. S. Longuet-Higgins.s As for the most intricate
of these, one may well suspect that only the original discoverer has
ever had patience, zeal, or perseverance enough to make a model.
The drawings alone are amazing enough.

For the purposes of this monograph the following fifteen models
are described, as a good representative set of the simpler ones. When
you have made them, you will have a good idea of why they are
classified as uniform polyhedra. It should not be necessary to give a
detailed description of the construction of these models. If you have
been successful so far, you will without doubt be able to proceed on
your own with a minimum of direction. The draw' .., shown in Fig-
ures 36 to 50 reveal the facial planes and the lines of intersection of
planes, as well as the nets required for each model. If you compare
each of these with the photograph of its model, you will understand
the relationship of parts.

One special hint about construction techniques may be in order
here. It is this: Where a model has parts that have only edges in
common, a good way to construct it is by using a tongue-and-slot ar-
rangement. This technique can frequently be used in the models now
being described. For example, in Figure 36 you may begin by
cementing the hypotenuse of each of the isosceles right triangles to an
edge of the equilateral triangle. Then, instead of cementing these
isosceles triangles to form a triangular pyramid with all tabs inside,
turn one or two sets of tabs out, leaving the other set or sets turned in
but not cemented. The tabs turned out may be cemented to form a
tongue, which will later be inserted into the slot of another pyramidal
part and cemented there. A little experimenting will soon make this
technique clear. You will have to use your own judgment about what
tabs shoutd serve as tongue or slot. This technique is used in all the
figures from 36 through 44.
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As for color arrangements, no detailed description should be nec-
essary. You will find the most satisfactory results are obtained if you
make facial planes the same color. Try to follow the map-coloring
principle. Parallel planes may always be of the same color. Thus in
Figure 39 the octagons and squares that are parallel may be of the
same color. In Figure 41 the pentagons and decagons that are parallel
may be of the same color, since each decagon is on a plane below
and parallel to a pentagon. In Figure 42 the pentagon is part of
the same facial plane as the decagon, so it is of the same color.
In Figure 45 each star is on a plane parallel to the pentagon below it,
so a six-color arrangement works out very nicely. Figure 46 is easily
recognizable as a truncated form of the great dodecahedron and may
thus have the same color pattern. Each star can be of the same color
as the decagon below it. In Figure 47 three colors may be used for
the octagonal stars, and the same three colors will serve for the squares
that lie below them. Then two other colors may be used for the tri-
angles. These color arrangements are well worth the trouble it takes
to get them done correctly, because they help so much to bring out the
relationship between the intersecting regular and star polygons. Fig-
ure 48 is somewhat like Figure 47, but each small square is now copla-
nar with an octagonal star and thus should be of the same color as that
star. in Figure 49 there are eight triangles and their related hexagons,
which are actually coplanar. Then there are six octagons, each
parallel pair being perpendicular to the other two parallel pairs.
Finally the octagonal star is set high up over these octagonal planes.
Two colors will serve for the triangle-hexagon set, so they can alter-
nate; three other colors will then fill the needs of the rest of the planes,
with parallel planes of the same color. Finally, Figure 50 is best made
with a five-color arrangement for the triangles. It will be found that
the color arrangement given above for Figure 33 will serve the pur-
pose here. In fact, the construction can be easily done by making the
pentahedra! dimples each with a pentagon of a sixth color at the
bottom. These dimples can then be joined by cementing the star arms
to the edges of these dimples. A single net of three star arms joined at
their bases will serve here, because all the star planes are of the same
color, whereas each triangular plane has its own color. (See the fol-
lowing pages for Figures 36-50.)
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no. 37 (Model 6, p. 28)

Fw. 38 (Model 7, p. 28)
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FIG. 39 (Model 4, p. 28)
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Flo. 40 (Model 5, p. 28)
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Flo. 41 (Model 3, p. 23)

Flo. 42 (Model 9, p. 28)

34



no. 43 (Model 3, p. 28)

Flo. 44 (Model 2, p. 28)
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Flo. 45 (Model 10, p. 29)

Flo. 46 (Model 11, p. 29)

36



>

no. 47 (Model 12, p. 29)
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Flo. 48 (Model 13, p. 29)
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Flo. 49 (Model 14, p. 29)
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Flo. 50 (Model 15, p. 29)
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Conclusion

Does the construction of polyhedron models have any practical

significance apart from the hobby value it undoubtedly possesses? To

answer this question, you may refer to Coxeter's book Regular

Polytopes. To quote Coxeter: "The chief reason for studying regular

polyhedra is still the same as in the time of the Pythagoreans, namely,

that their symmetrical shapes appeal to one's artistic sense."' Again:

"Anyone who believes that mathematics should be useful as well as

beautiful should remember that polytopes have applications not only

to the geometry of numbers but also to such practical subjects as the

theory of communications and linear programming."'
En a geometry classroom polyhedron models may be used to illus-

trate the ideas of symmetry, reflection, rotation, and translation. Felix

Klein, as far back as 1884, gave lectures on the regular solids and the

theory of groups. His lectures on the icosahedron have thrown new

light on the general quintic equation.1° The various color arrange-
ments suggested in this monograph might well be subjected to the

mathematical analysis of group theory. At any rate, there is plenty of

pure mathematics in the theory of polyhedra. More research may yet

yield applications that up to now have never been thought possible.
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1. Thomas L. Heath, A History of Greek Mathematics (New York:

Oxford University Press, 1921), pp. 159-60.

2. H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P. Miller,

Uniform Polyhedra ("Philosophical Transactions of the Royal Society

of London," Ser. A, Vol. CCXLV[, No. 196 [London: Cambridge

University Press, 1954]), p. 402.
3. Heath, op. cit., p. 162.
4. H. S. M. Coxeter, P. Du Val, H. T. Flather, and J. F. Petrie, The

Fifty-nine Icosahedra ("Mathematical Series," No. 6 [Toronto: Uni-
versity of Toronto Press, 1938]), pp. 8-18.

5. Coxeter, Longuet-Higgins, and Miller, op. cit., pp. 401-50.
6. Max Brueckner, Vie lecke and Vielflache (Leipzig: Teubner,

1900).
7. Coxeter, Longuet-Higgins, and Miller, op. cit., p. 402.

8. H. S. M. Coxeter, Regular Polytopes (1st ed.; London: Methuen

& Co., 1948), p. ix.
^ Ibid. (2nd ed.; New York: The Macmillan Co., 1963), p. viii.

10. Telix Klein, Lectures on the Icosahedron (New York: Dover
Publications, 1956), esp. chap. i, "The Regular Solids and the Theory

of Groups."
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